【布尔季最新新闻】布尔季直播|赛程表|积分榜|排名|资料库

布尔季

桑德罗·布尔基的妻子

你问的问题,

桑德罗·布尔基,

我们也不知道他是谁,

叫桑德罗·布尔基有很多,

不知道你指的是哪一个。

他妻子更不知道,

假如你知道桑德罗·布尔基是谁,

肯定也应该知道他妻子的。

或者只能向他的朋友打听才行。

请问: 是谁发明了《对数》?

数学史册上的对数发明者是两个人:英国的约翰·耐普尔和瑞士的乔伯斯特·布尔基。

布尔基原是个钟表技师,1603年被选入担承布拉格宫庭技师后,开始与著名的天文学家开普勒接触,了解到天文计算的一些具体情况。他体察天文学家的辛劳,并决定为他们提供简便的计算方法。

布尔基所提供的简便计算方法就是一张实用的对数表。从原则上说,史提非已经解决了将乘(除)运算转为加(减)运算的途径。但是,史提非所给出的两个数列中的数字十分有限,它不能付之于实用,实用的对数表必须包括所有要乘的数在内。

为了做到这一点,布尔基采取尽可能细密地列了等比数列的办法。他给出的等比数列及其相应的等差数列相当于:

1,1.0001,(1.0001)²,(1.0001)³,···,(1.0001)n,···,(1.0001)10000,···

0,0.0001,0.0002,0.0003,···,0.0001·n,···,1,···

这里,等差数列中的1,对应于等比数列中的(1.0001)10000。就是说,布尔基在造表时,把对数的底取为

(1.0001)10000=2.718145927···,与自然对数的底e=2.718281828···相差不远。但需要批出的是,无论是布尔基还是后面要讲到的耐普尔,他们都没有关于对数“底”的观念。因为他们都不是从ax=N的关系出发来定义对数x=logaN的。

耐普尔原是苏格兰的贵族,生于苏格兰的爱丁堡,12岁进入圣安德鲁斯大学的斯帕希杰尔学院学习。16岁大学尚未毕业时又到欧洲大陆旅行和游学,丰富了自己的学识。耐普尔虽不是专业数学家,但酷爱数学,他在一个需要改革计算技术的时代里尽心尽力。正如他说:“我总是尽量是不使自己的精力和才能去摆脱麻烦而单调的计算,因为这种令人厌烦的计算常使学习者望而生畏。”耐普尔一生先后为改进计算得出了球面三角中的“耐普尔比拟式”、“耐普尔圆部法则”以及作乘除用的“耐普尔算筹”而为制作对数表他化了整整20年时间。

1614年,耐普尔发表了他的《关于奇妙的对数表的说明》一书,书中不仅提出了数学史上第一张对数表(布尔基的对数表发表于1620年),而且阐述了这个发明的思想过程。

小数的由来请问高手

小数的历史:  小数是我国最早提出和使用的。早在公元三世纪,我国古代数学家刘微在解决一个数学难题时就提出了把整个位以下无法标出名称的部分称为微数。小数的名称是公元十三世纪我国元代数字家朱世杰提出的。在十三世纪中我国出现了低一格表示小数的记法。  在西方,小数出现很晚。直到十六世纪,法国数学家克拉维斯首先用了小数点作为整数部分与小数部分分界的记号。分数与小数最早出现的分数叫做“单分数”,它是以“单位”为整体,对单位进行分割后的部分。早在公元前1700年,古埃及人已经对“单分数”有了完整的认识,并且能用若干“单分数”来表示其他的分子大于1的分数。人类文明大多发源于大河之畔。在埃及的尼罗河、巴比伦的底格里斯河和幼发拉底河以及中国的黄河之畔,最早出现了人类文明的曙光。在古代埃及的尼罗河河畔和沼泽地带,盛长着一种水草,埃及人用这种水草造纸,用来记载事物。用这种水草造的纸被称为“纸草纸”。1858年,英国学者主亨利·莱因特,把在特贝的废墟上发现的纸草纸修补完善。它至今仍被珍藏在伦敦的大英博物馆内。这本书直到1877年才被翻译出来。这是一位名叫艾塞洛尔的德国考古学家费尽心机获得的成果。根据他的译文,人们才知道,这是公元前1650年左右埃及的神官阿梅斯撰写的一部数学著作,总结了当时已为人们所掌握的数学知识。于是,这本书以其发现者的名字命名,叫做《莱因特的纸草书》。这本书较为完整地记录了当时埃及人对分数认识的成果。埃及人对单分数的认识比起原始的孤立的分数概念前进了一大步。它使分数不仅能作为一个量的表示形式,而且可作为与自然数学并用于计算的数。但是,古埃及人把“单分数”作为一切分数的“基本元素”。除了2/3外,把所有的分子大于2的分数,统统用单分数表示,例如7/8写成1/2+1/4+1/8,5/6写成1/2+1/3。这样,反而使一个简单的分数复杂化了。单分数远不是分数的全部。完整的分数概念是建立在整数之比基础上的,它产生于整数的除法之中。在我国很早就有合理的分数表示法,在筹算中,除法本身就已经包含了分数的表示法。我国的《九章算术》是世界上最早的系统叙述分数的著作,比欧洲要早出1400余年。大约在公元三四世纪,印度才开始出现与我国同样的分数表示法。在《九章算术》“方田章”中,就有关于“约分”、“通分”、“合分”(分数加法)、“减分”(分数减法)、“乘分”(分数乘法)、“经分”(分数除法)、“课分”(分数的大小比较)、“平分”(求分数的平均数)等分数运算法则的记载。其中约分法与现在一样,先求最大公约数,后用最大公约数分别除分子、分母。在做除法时,将除数的分子、分母颠倒而与被除数相乘,这在当时来说是很了不起的创造。小数,即不带分母的十进分数。小数的产生有两个前提:一是十进制记数法的使用;二是分数概念的完善。小数的出现标志着十进制记数法从整数扩展到了分数,使分数与整数在形式上获得了统一。我国对小数的认识在世界上也是最早的。公元3世纪,我国数学家刘徽在注释《九章算术》中处理平方要根问题时就提出了十进小数。虽然我国对小数的认识远远早于欧洲,但现代数学中所使用的小数的表示法却是从欧洲传入我国的。欧洲关于十进小数的最大贡献者是荷兰工程师斯蒂文(Simon Stevin,1548—1620)。他从制造利息表中体会到十进小数的优越性,因此他竭力主张把十进小数引进到整个算术运算中去,使十进小数有效地参与记数。不过,斯蒂文的小数记法并不高明,如139.654,他写作135⊙6①5②4③,每个数后面圈中的数是用来指明它前面数字位置的,这种表示方法,使小数的形式复杂化,并且给小数的运算带来很大的麻烦。1592年,瑞士数学家布尔基(Jobst Burgi)对此作出较大的改进。他用一空心小圆圈把整数部分和小数部分隔开,比如把36.548表示为36。548,这与现代的表示法已极为接近。大约过了一年,德国的克拉维斯,首先用黑点代替了小圆圈。他在1608年发表的《代数学》中,将他的这一做法公之于世,至此,小数的现代记法才被确立下来。

为您推荐

发表评论

联系我们

联系我们

在线咨询: QQ交谈

邮箱: 1821497181@qq.com

工作时间:周一至周五,10:00-18:30,节假日休息
返回顶部